RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. SIXTH SEMESTER EXAMINATION, MAY 2018

THIRD YEAR [BATCH 2015-18] MATHEMATICS (Honours)

Date : 04/05/2018 Time : 11 am – 3 pm

[Use a separate Answer Book <u>for each Group</u>]

Paper: VII

Group - A

(Answer <u>any three</u> questions) [3×10]

1. a) Examine the convergence of $\int_{0}^{1} x^{m-1} (1-x)^{n-1} \log x \, dx$.

b) Show that $\iint_{E} \frac{\sqrt{a^2b^2 - b^2x^2 - a^2y^2}}{\sqrt{a^2b^2 + b^2x^2 + a^2y^2}} dxdy = \frac{\pi}{4} \left(\frac{\pi}{2} - 1\right) ab$, where E is the positive quadrant of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$ [5]

- 2. a) Prove that $\int_{0}^{\infty} \frac{\sin mx}{x^{n}} dx$ (m, n > 0) is convergent if , 0<n<2 and absolutely convergent if 1< n<2. [5]
 - b) Find the Fourier series expansion for e^{ax} on $(-\pi, \pi)$.
- 3. a) Show that $\int_{0}^{1} x^{m-1} (\log x)^{n-1} dx$ is convergent if m > 0, n > 0. [4]
 - b) Show that the series $2\left\{\sin x + \frac{1}{2}\sin 2x + \frac{1}{3}\sin 3x + ...\right\}$ represents (πx) on $(0, 2\pi)$. [3]
 - c) Change the order of the integration for $\int_{\frac{1}{3}}^{\frac{2}{3}} dx \int_{x^2}^{\sqrt{x}} f(x, y) dy$. [3]
- 4. a) Consider the periodic function $f:[0,2\pi] \to \mathbb{R}$ defined by
 - $f(x) = \begin{cases} 1 & \text{if } 0 \le x < \pi \\ 0 & \text{if } \pi \le x < 2\pi \\ 1 & \text{if } x = 2\pi \end{cases}$

Find the Fourier series of f.

b) Evaluate $\iint \sqrt{4a^2 - x^2 - y^2} dx dy$, the integral being taken over upper half of the circle $x^2 + y^2 - 2ax = 0$. [5]

5. a) Show that the Fourier Series of x cos x on $[-\pi, \pi]$ is $x \cos x = -\frac{1}{2} \sin x + 2\sum_{n=2}^{\infty} \frac{(-1)^n n \sin nx}{n^2 - 1}$. [5]

b) Evaluate : $\int_{0}^{\infty} e^{-t^{2}} \cos(xt) dt$ [5]

Full Marks : 100

[5]

[5]

[5]

Group - B

		(Answer <u>any jour</u> questions)	[4×3]	
6.	a)	Suppose a, b are two positive integers such that $gcd(a, b) = 1$. Prove that $gcd(a+b, ab) = 1$.	[3]	
	b)	Prove that, for any positive integer n, $\phi(3n) = 3\phi(n)$ if and only if n is divisible by 3, where ϕ is Euler phi-function.	[2]	
7.	Fin resp	d the least positive integer which leaves the remainders 3, 6 and 4 when divided by 5, 7 and 1 pectively.	1 [5]	
8.	a)	If p and $p^2 + 8$ both are prime numbers, prove that $p = 3$.	[3]	
	b)	If p is a prime number greater than 3, then prove that $p^2 - 1$ is divisible by 24.	[2]	
9.	Sta	te and prove Wilson's theorem.	[5]	
10.	Def	Define Euler's phi-function ϕ . Show that for any positive integer n, $n = \sum_{d n} \phi(d)$ where the summation		
	run	s over all positive divisors of n.	[1+4]	
11.	a)	Show that there are no positive integer n such that $\sigma(n) = 10$.	[2]	

b) Find the smallest positive integer with 18 positive divisors. [3]

F4~51

[2]

with probabilities
$$\frac{1}{3}$$
 and $\frac{2}{3}$ respectively for a head. One coin is taken at random and tossed twice.
If head appears both times, what is the probability that the unbiased coin is chosen? [4]

- 13. a) A man takes a step forward with probability 0.7 and backward with probability 0.3. Find the probability that at the end of 13 steps he is 3 steps away from the starting point. [5]
 - Find the value of the constant K so that the function f_x given by b)

$$f_x(x) = \begin{cases} Kx(2-x) &, & 0 < x < 2\\ 0 &, & \text{elsewhere} \end{cases}$$

is a probability density function. Construct the distribution function and compute P(X > 1). [5]

- If X and Y are independent variates, both uniformly distributed over (0,1), find the distributions of 14. a) X + Y and X - Y. [5]
 - X be a normal (m, σ) variate, then prove that $\mu_{2K+2} = \sigma^2 \mu_{2K} + \sigma^3 \frac{d\mu_{2K}}{d\sigma}$, μ_K is the K-th central b) [5] moment.
- Let X, Y be two correlated random variables and U, V be two random variables obtained from the 15. a) random variables X, Y by the rotation of coordinate axes through an angle α i.e

 $U = X \cos \alpha + Y \sin \alpha$, $V = -X \sin \alpha + Y \cos \alpha$ then show that U and V will be uncorrelated, if

$$\alpha = \frac{1}{2} \tan^{-1} \left(\frac{2\sigma_x \sigma_y \rho(\mathbf{X}, \mathbf{Y})}{\sigma_x^2 - \sigma_y^2} \right).$$
[4]

- b) Show that the acute angle θ between the least square regression lines is given by $\tan \theta = \frac{1-\rho^2}{|\rho|} \cdot \frac{\sigma_x \sigma_y}{\sigma_x^2 + \sigma_y^2}$. Discuss the cases when $\rho = 0 \& \rho = \pm 1$. [3]
- c) Let $\{X_n\}_n$ be a sequence of random variables such that the mean m_n and variance σ_n^2 of X_n for each n exists. If $\sigma_n \to 0$ as $n \to \infty$, then show that $X_n m_n \xrightarrow{\text{in P}} 0$ as $n \to \infty$. [3]
- 16. a) A random variable X has p.d.f. $12x^2(1-x)$, 0 < x < 1. Compute $P(|X-m| \ge 2\sigma)$ and compare it with the limit given by Tchebycheff's Inequality. [5]

b) Use Tchebycheff's inequality to show that for $n \ge 36$, the probability that in n throws of a fair die the number of sixes lies between $\frac{n}{6} - \sqrt{n}$ and $\frac{n}{6} + \sqrt{n}$ is at least $\frac{31}{36}$. [5]

Group - D

(Answer <u>any two</u> questions) [2×10]

17. a) Show that the function f(z) = |z| is nowhere differentiable in \mathbb{C} but continuous everywhere. [4]

- b) Let f(z) be a real function of a complex variable z. Then show that either f has the derivative zero or the derivative does not exist. [3]
- c) If p(x, y) and q(x, y) are harmonic functions in a domain $\Omega \subset \mathbb{C}$, prove that $c_1 p + c_2 q$ are harmonic in Ω where c_1, c_2 are constant. [3]
- 18. a) Let f(z) = u(x, y) + iv(x, y) be an analytic function (where z = x + iy). Find f(z) when $u - v = (x - y)(x^2 + 4xy + y^2)$. [4]
 - b) Find the image point on the Riemann sphere S for the point 4 + 3i in the complex plane \mathbb{C} . [3]
 - c) "1 is not the maximum value of $|\sin z|$, when z is a complex variable"—justify the statement. [3]
- 19. a) Let $f_n \to f$ uniformly on $S(\subseteq \mathbb{C})$. If each f_n is continuous at a point c of S then show that the limit function f is also continuous at c. [4]
 - b) Let $f: \mathbb{C} \to \mathbb{C}$ is complex differentiable at $z_0 = x_0 + iy_0$. Prove that f is differentiable in the sense of real variables as a function from \mathbb{R}^2 to \mathbb{R}^2 . Also show that the determinant of the Jacobian matrix of f at (x_0, y_0) is $|f'(z_0)|^2$. [4+2]

_____ X _____